Solution Bank

Chapter review 5

1 a
$$y = 2^{-x} = (2^{-1})^x = (\frac{1}{2})^x$$

b $y = 5e^{x} - 1$ The graph is a translation by the vector $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$ and a vertical stretch scale factor 5 of the graph $y = e^{x}$. The graph crosses the y-axis when x = 0. $y = 5 \times e^{0} - 1$ y = 4

The graph crosses the *y*-axis at (0, 4). Asymptote is at y = -1.

- 2 a $\ln(p^2q) = \ln(p^2) + \ln(q)$ = $2\ln(p) + \ln(q)$
 - **b** $\ln(pq) = 5$ and $\ln(p^2q) = 9$ $\ln(pq) = \ln(p) + \ln(q) = 5$ (1) $\ln(p^2q) = 2\ln(p) + \ln(q) = 9$ (2) Subtracting equation (1) from equation (2) gives: $\ln(p) = 4$ Substituting into equation (1) gives: $4 + \ln(q) = 5$ Therefore $\ln(q) = 1$
- 3 a $y = e^{-x}$ $\frac{dy}{dx} = -e^{-x}$

b
$$y = e^{11x}$$

$$\frac{dy}{dx} = 11e^{11x}$$

$$c \quad y = 6e^{5x}$$
$$\frac{dy}{dx} = 5 \times 6e^{5x} = 30e^{5x}$$

4 a
$$\ln(2x-5) = 8$$
 (inverse of ln)
 $2x-5 = e^{8}$ (+5)
 $2x = e^{8} + 5$ (÷2)
 $x = \frac{e^{8} + 5}{2}$

b $e^{4x} = 5$ (inverse of e) $4x = \ln 5$ (÷4) $x = \frac{\ln 5}{4}$

c $24 - e^{-2x} = 10 (+e^{-2x})$ $24 = 10 + e^{-2x} (-10)$ $14 = e^{-2x}$ (inverse of e) $\ln (14) = -2x (\div -2)$ $-\frac{1}{2}\ln(14) = x$ $x = -\frac{1}{2}\ln(14)$

4 d
$$\ln(x) + \ln(x-3) = 0$$

 $\ln(x(x-3)) = 0$
 $x(x-3) = e^{0}$
 $x(x-3) = 1$
 $x^{2} - 3x - 1 = 0$
 $x = \frac{3 \pm \sqrt{9+4}}{2}$
 $= \frac{3 \pm \sqrt{13}}{2}$
 $= \frac{3 \pm \sqrt{13}}{2}$

(*x* cannot be negative because of initial equation)

e
$$e^{x} + e^{-x} = 2$$

 $e^{x} + \frac{1}{e^{x}} = 2$ (× e^{x})
 $(e^{x})^{2} + 1 = 2 e^{x}$
 $(e^{x})^{2} - 2 e^{x} + 1 = 0$
 $(e^{x} - 1)^{2} = 0$
 $e^{x} = 1$
 $x = \ln 1 = 0$

f
$$\ln 2 + \ln x = 4$$

 $\ln 2x = 4$
 $2x = e^4$
 $x = \frac{e^4}{2}$

5 $P = 100 + 850 \,\mathrm{e}^{-\frac{t}{2}}$

a New price is when t = 0

Substitute t = 0 into $P = 100 + 850e^{-\frac{t}{2}}$ to give:

$$P = 100 + 850e^{-\frac{0}{2}} \quad (e^0 = 1)$$

$$=100+850=950$$

The new price is €950

Solution Bank

5 b After 3 years t = 3. Substitute t = 3 into P = 1

Substitute t = 3 into $P = 100 + 850e^{-\frac{t}{2}}$ to give:

 $P = 100 + 850e^{-\frac{3}{2}} = 289.66$

Price after 3 years is €290 (to nearest €)

c It is worth less than \notin 200 when P < 200

Substitute P = 200 into $P = 100 + 850e^{-\frac{t}{2}}$ to give:

$$200 = 100 + 850e^{-\frac{t}{2}}$$
$$100 = 850e^{-\frac{t}{2}}$$
$$\frac{100}{850} = e^{-\frac{t}{2}}$$
$$\ln\left(\frac{100}{850}\right) = -\frac{t}{2}$$
$$t = -2 \ln\left(\frac{100}{850}\right)$$
$$t = 4.28$$

It is worth less than €200 after 4.28 years.

d As $t \to \infty$, $e^{\frac{t}{2}} \to 0$ Hence, $P \to 100 + 850 \times 0 = 100$ The computer will be worth $\in 100$ eventually.

f A good model. The computer will always be worth something.

Solution Bank

6 a

$$=\frac{1}{1n}$$

Using y = mx + c, the equation of the line PQ is: 2

$$y = \frac{2}{\ln 4}x + c$$

 $(\ln 4, 2)$ lies on the line so

$$y = \frac{2}{\ln 4}x + c$$

$$2 = 2 + c$$

$$c = 0$$

Equation of PQ is $y = \frac{2x}{\ln 4}$

- **b** The line passes through the origin as c = 0.
- c Length from $(\ln 4, 2)$ to $(\ln 16, 4)$ is $\sqrt{(\ln 16 \ln 4)^2 + (4 2)^2}$

$$\sqrt{(\ln 16 - \ln 4)^{2} + (4 - 2)^{2}}$$
$$= \sqrt{(\ln 4)^{2} + 4} = 2.43$$

7 **a** $T = 55 e^{-\frac{t}{8}} + 20$

с

t is the time in minutes and time cannot be negative as you can't go back in time.

b The starting temperature of the cup of tea is when t = 0 $T = 55 e^{-\frac{0}{8}} + 20 = 75^{\circ}C$

When
$$T = 50^{\circ}$$
C
 $55 e^{-\frac{t}{8}} + 20 = 50$
 $55 e^{-\frac{t}{8}} = 30$
 $e^{-\frac{t}{8}} = \frac{30}{55}$
 $\ln\left(e^{-\frac{t}{8}}\right) = \ln\left(\frac{30}{55}\right)$
 $-\frac{t}{8} = \ln\left(\frac{30}{55}\right)$
 $t = -8\ln\left(\frac{30}{55}\right)$
 $= 4.849...$
 ≈ 5 minutes

- **d** The exponential term will always be positive, so the overall temperature will be greater than 20°C.
- 8 a As $S = aV^b$ $\log S = \log (aV^b)$ $\log S = \log a + \log \left(V^b \right)$ $\log S = \log a + b \log V$

b						
	$\log S$	1.26	1.70	2.05	2.35	2.50
	0	-				
	$\log V$	0.86	1.53	2.05	2.49	2.72
	0				-	-

8 d b is the gradient =
$$\frac{2.72 - 0.86}{2.5 - 1.26}$$

= $\frac{1.86}{1.24} = 1.5$
Intercept = log a
log a = -1.05
 $10^{-1.05} = a$
a = 0.0891...
a \approx 0.09

- **9 a** The student goes wrong in line 2, where the subtraction should be a division (as in line 2 below).
 - **b** The full working should have looked like this:

$$\log_{2} x - \frac{1}{2} \log_{2} (x+1) = 1$$

$$\log_{2} x - \log_{2} \left((x+1)^{\frac{1}{2}} \right) = 1$$

$$\log_{2} x - \log_{2} (\sqrt{x+1}) = 1$$

$$\log_{2} \frac{x}{\sqrt{x+1}} = 1$$

$$\frac{x}{\sqrt{x+1}} = 2^{1}$$

$$x = 2\sqrt{x+1} \text{ (square)}$$

$$x^{2} = 4x + 4$$

$$x^{2} - 4x - 4 = 0 \text{ (use quadratic formula)}$$

$$x = 2 + 2\sqrt{2}$$

 $(x \neq 2 - 2\sqrt{2} \text{ because log cannot take})$ negative input values)

10 a The gradient is given by: $m = \frac{\log_{10} P_2 - \log_{10} P_1}{t_2 - t_1}$ $= \frac{2.2 - 2}{20 - 0}$ = 0.01The line crosses the vertical axis at (0, 2) therefore the equation of the line is:

$$\log_{10} P = 0.01t + 2$$

Solution Bank

10 b
$$P = ab^{t}$$

 $\log_{10}(P) = \log_{10}(ab^{t})$
 $= \log_{10}(a) + \log_{10}(b^{t})$
 $= \log_{10}(a) + t \log_{10}(b)$
Comparing
 $\log_{10}(P) = \log_{10}(a) + t \log_{10}(b)$
to
 $\log_{10} P = 0.01t + 2$
gives:
 $\log_{10}(a) = 2 \Rightarrow a = 100$
When $t = 0$, $P_{0} = ab^{0} = a$
Therefore, *a* represents the initial
population of the colony.
When the population was first recorded,
there were 100 ground-cuckoos.
c Comparing
 $\log_{10}(P) = \log_{10}(a) + t \log_{10}(b)$
to
 $\log_{10} P = 0.01t + 2$
gives:
 $t \log_{10}(b) = 0.01t$
 $b = 10^{0.01}$
 $= 1.023...$
 $= 1.023 (3 d.p.)$

d Substituting a = 100 and $b = 10^{0.01}$ into $P = ab^t$ gives; $P = 100 \times (10^{0.01})^t = 100 \times 10^{0.01t}$ When t = 30: $P = 100 \times 10^{0.01(30)}$ $= 100 \times 10^{0.3}$ = 199.526...= 200 (3 s.f.)

Solution Bank

Challenge

The relationship between $\log x$ and $\log y$ is not linear so the relationship is perhaps $y = ax^n$

The second graph, $\log y$ against *x*, is a linear relationship so the relationship is of the form $y = ab^x$ $\log y = \log (ab^x)$ $\log y = \log a + \log b^x$ $\log y = \log a + x \log b$

Intercept = 0.75log a = 0.75

 $a = 10^{0.75} = 5.8$

Gradient = $\frac{0.58 - 0.72}{4 - 1} = -\frac{0.14}{3} = -0.04666...$ log b = -0.04666... b = 10^{-0.04666...}

$$= 0.90$$

So the formula is $y = 5.8 \times 0.9^{x}$