Pure Mathematics 3

Chapter review 5

1 a $y=2^{-x}=\left(2^{-1}\right)^{x}=\left(\frac{1}{2}\right)^{x}$

b $y=5 \mathrm{e}^{x}-1$
The graph is a translation $b y$ the vector $\binom{0}{-1}$ and a vertical stretch scale factor 5 of the graph $y=\mathrm{e}^{x}$.
The graph crosses the y-axis when $x=0$.
$y=5 \times \mathrm{e}^{0}-1$
$y=4$
The graph crosses the y-axis at $(0,4)$.
Asymptote is at $y=-1$.

c $y=\ln x$

2 a $\ln \left(p^{2} q\right)=\ln \left(p^{2}\right)+\ln (q)$

$$
=2 \ln (p)+\ln (q)
$$

b $\ln (p q)=5$ and $\ln \left(p^{2} q\right)=9$
$\ln (p q)=\ln (p)+\ln (q)=5$
$\ln \left(p^{2} q\right)=2 \ln (p)+\ln (q)=9$
Subtracting equation (1) from equation (2) gives:
$\ln (p)=4$
Substituting into equation (1) gives:
$4+\ln (q)=5$
Therefore
$\ln (q)=1$
3 a $y=\mathrm{e}^{-x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\mathrm{e}^{-x}$
b $y=\mathrm{e}^{11 x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=11 \mathrm{e}^{11 x}$
c $y=6 \mathrm{e}^{5 x}$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=5 \times 6 \mathrm{e}^{5 x}=30 \mathrm{e}^{5 x}
$$

4 a $\ln (2 x-5)=8$ (inverse of \ln)

$$
\begin{aligned}
2 x-5 & =\mathrm{e}^{8} \quad(+5) \\
2 x & =\mathrm{e}^{8}+5 \quad(\div 2) \\
x & =\frac{\mathrm{e}^{8}+5}{2}
\end{aligned}
$$

b $\mathrm{e}^{4 x}=5 \quad$ (inverse of e)
$4 x=\ln 5 \quad(\div 4)$
$x=\frac{\ln 5}{4}$
c $24-\mathrm{e}^{-2 x}=10 \quad\left(+\mathrm{e}^{-2 x}\right)$
$24=10+\mathrm{e}^{-2 x} \quad(-10)$
$14=\mathrm{e}^{-2 x} \quad$ (inverse of e)
$\ln (14)=-2 x \quad(\div-2)$
$-\frac{1}{2} \ln (14)=x$
$x=-\frac{1}{2} \ln (14)$

Pure Mathematics 3

4 d $\ln (x)+\ln (x-3)=0$
$\ln (x(x-3))=0$
$x(x-3)=\mathrm{e}^{0}$
$x(x-3)=1$
$x^{2}-3 x-1=0$
$x=\frac{3 \pm \sqrt{9+4}}{2}$
$=\frac{3 \pm \sqrt{13}}{2}$
$=\frac{3+\sqrt{13}}{2}$
(x cannot be negative because of initial equation)
e $\quad \mathrm{e}^{x}+\mathrm{e}^{-x}=2$
$\mathrm{e}^{x}+\frac{1}{\mathrm{e}^{x}}=2 \quad\left(\times \mathrm{e}^{x}\right)$
$\left(\mathrm{e}^{x}\right)^{2}+1=2 \mathrm{e}^{x}$
$\left(\mathrm{e}^{x}\right)^{2}-2 \mathrm{e}^{x}+1=0$
$\left(\mathrm{e}^{x}-1\right)^{2}=0$
$\mathrm{e}^{x}=1$
$x=\ln 1=0$
f $\ln 2+\ln x=4$
$\ln 2 x=4$
$2 x=e^{4}$
$x=\frac{\mathrm{e}^{4}}{2}$
$5 P=100+850 \mathrm{e}^{-\frac{t}{2}}$
a New price is when $t=0$
Substitute $t=0$ into $P=100+850 \mathrm{e}^{-\frac{t}{2}}$ to give:

$$
\begin{aligned}
P & =100+850 \mathrm{e}^{-\frac{0}{2}} \quad\left(\mathrm{e}^{0}=1\right) \\
& =100+850=950
\end{aligned}
$$

The new price is $€ 950$

5 b After 3 years $t=3$.
Substitute $t=3$ into $P=100+850 \mathrm{e}^{-\frac{t}{2}}$ to give:

$$
P=100+850 \mathrm{e}^{-\frac{3}{2}}=289.66
$$

Price after 3 years is $€ 290$ (to nearest $€$)
c It is worth less than $€ 200$ when $P<200$
Substitute $P=200$ into $P=100+850 \mathrm{e}^{-\frac{t}{2}}$ to give:

$$
\begin{aligned}
200 & =100+850 \mathrm{e}^{-\frac{t}{2}} \\
100 & =850 \mathrm{e}^{-\frac{t}{2}} \\
\frac{100}{850} & =\mathrm{e}^{-\frac{t}{2}} \\
\ln \left(\frac{100}{850}\right) & =-\frac{t}{2} \\
t & =-2 \ln \left(\frac{100}{850}\right) \\
t & =4.28
\end{aligned}
$$

It is worth less than $€ 200$ after 4.28 years.
d As $t \rightarrow \infty, \mathrm{e}^{-\frac{t}{2}} \rightarrow 0$
Hence, $P \rightarrow 100+850 \times 0=100$ The computer will be worth $€ 100$ eventually.
e

f A good model. The computer will always be worth something.

6 a

Q has y-coordinate $\mathrm{e}^{\frac{1}{2} \ln 16}=\mathrm{e}^{\ln 16 \times \frac{1}{2}}=16^{\frac{1}{2}}=4$
P has y-coordinate $\mathrm{e}^{\frac{1}{2} \ln 4}=\mathrm{e}^{\ln 4 \times \frac{1}{2}}=4^{\frac{1}{2}}=2$
Gradient of the line $P Q=\frac{\text { change in } y}{\text { change in } x}$

$$
\begin{aligned}
& =\frac{4-2}{\ln 16-\ln 4} \\
& =\frac{2}{\ln \left(\frac{16}{4}\right)} \\
& =\frac{2}{\ln 4}
\end{aligned}
$$

Using $y=m x+c$, the equation of the line $P Q$ is:
$y=\frac{2}{\ln 4} x+c$
$(\ln 4,2)$ lies on the line so
$y=\frac{2}{\ln 4} x+c$
$2=2+c$
$c=0$
Equation of $P Q$ is $y=\frac{2 x}{\ln 4}$
b The line passes through the origin as $c=0$.
c Length from $(\ln 4,2)$ to $(\ln 16,4)$ is
$\sqrt{(\ln 16-\ln 4)^{2}+(4-2)^{2}}$
$=\sqrt{\left(\ln \frac{16}{4}\right)^{2}+2^{2}}$
$=\sqrt{(\ln 4)^{2}+4}=2.43$

7 a $\quad T=55 \mathrm{e}^{-\frac{t}{8}}+20$ t is the time in minutes and time cannot be negative as you can't go back in time.
b The starting temperature of the cup of tea is when $t=0$
$T=55 \mathrm{e}^{-\frac{0}{8}}+20=75^{\circ} \mathrm{C}$
c When $T=50^{\circ} \mathrm{C}$
$55 \mathrm{e}^{-\frac{t}{8}}+20=50$
$55 \mathrm{e}^{-\frac{t}{8}}=30$
$\mathrm{e}^{-\frac{t}{8}}=\frac{30}{55}$
$\ln \left(\mathrm{e}^{-\frac{t}{8}}\right)=\ln \left(\frac{30}{55}\right)$
$-\frac{t}{8}=\ln \left(\frac{30}{55}\right)$
$t=-8 \ln \left(\frac{30}{55}\right)$
$=4.849 \ldots$
≈ 5 minutes
d The exponential term will always be positive, so the overall temperature will be greater than $20^{\circ} \mathrm{C}$.

8 a As $S=a V^{b}$
$\log S=\log \left(a V^{b}\right)$
$\log S=\log a+\log \left(V^{b}\right)$
$\log S=\log a+b \log V$
b

$\log S$	1.26	1.70	2.05	2.35	2.50
$\log V$	0.86	1.53	2.05	2.49	2.72

c

Pure Mathematics 3

$8 \mathbf{d} b$ is the gradient $=\frac{2.72-0.86}{2.5-1.26}$

$$
=\frac{1.86}{1.24}=1.5
$$

Intercept $=\log a$
$\log a=-1.05$
$10^{-1.05}=a$
$a=0.0891 \ldots$
$a \approx 0.09$
9 a The student goes wrong in line 2, where the subtraction should be a division (as in line 2 below).
b The full working should have looked like this:

$$
\begin{aligned}
& \log _{2} x-\frac{1}{2} \log _{2}(x+1)=1 \\
& \log _{2} x-\log _{2}\left((x+1)^{\frac{1}{2}}\right)=1 \\
& \log _{2} x-\log _{2}(\sqrt{x+1})=1 \\
& \log _{2} \frac{x}{\sqrt{x+1}}=1 \\
& \frac{x}{\sqrt{x+1}}=2^{1} \\
& x=2 \sqrt{x+1} \quad \text { (square) } \\
& x^{2}=4 x+4
\end{aligned}
$$

$$
x^{2}-4 x-4=0 \quad \text { (use quadratic formula) }
$$

$$
x=2+2 \sqrt{2}
$$

($x \neq 2-2 \sqrt{2}$ because log cannot take negative input values)

10 a The gradient is given by:

$$
\begin{aligned}
m & =\frac{\log _{10} P_{2}-\log _{10} P_{1}}{t_{2}-t_{1}} \\
& =\frac{2.2-2}{20-0} \\
& =0.01
\end{aligned}
$$

The line crosses the vertical axis at $(0,2)$ therefore the equation of the line is:
$\log _{10} P=0.01 t+2$
$10 \mathrm{~b} P=a b^{t}$

$$
\begin{aligned}
\log _{10}(P) & =\log _{10}\left(a b^{t}\right) \\
& =\log _{10}(a)+\log _{10}\left(b^{t}\right) \\
& =\log _{10}(a)+t \log _{10}(b)
\end{aligned}
$$

Comparing
$\log _{10}(P)=\log _{10}(a)+t \log _{10}(b)$
to
$\log _{10} P=0.01 t+2$
gives:
$\log _{10}(a)=2 \Rightarrow a=100$
When $t=0, P_{0}=a b^{0}=a$
Therefore, a represents the initial population of the colony.
When the population was first recorded, there were 100 ground-cuckoos.
c Comparing
$\log _{10}(P)=\log _{10}(a)+t \log _{10}(b)$
to
$\log _{10} P=0.01 t+2$
gives:

$$
\begin{aligned}
& t \log _{10}(b)=0.01 t \\
& b=10^{0.01} \\
& \\
& =1.023 \ldots \\
& \\
& =1.023 \text { (3 d.p.) }
\end{aligned}
$$

d Substituting $a=100$ and $b=10^{0.01}$ into
$P=a b^{t}$ gives;
$P=100 \times\left(10^{0.01}\right)^{t}=100 \times 10^{0.01 t}$
When $t=30$:

$$
\begin{aligned}
P & =100 \times 10^{0.01(30)} \\
& =100 \times 10^{0.3} \\
& =199.526 \ldots \\
& =200 \text { (3 s.f.) }
\end{aligned}
$$

INTERNATIONAL A LEVEL

Pure Mathematics 3

Challenge

$\log x$	0	0.30	0.48	0.60
$\log y$	0.72	0.67	0.63	0.58

The relationship between $\log x$ and $\log y$ is not linear so the relationship is perhaps $y=a x^{n}$

x	1	2	3	4
$\log y$	0.72	0.67	0.63	0.58

The second graph, $\log y$ against x, is a linear relationship so the relationship is of the form $y=a b^{x}$
$\log y=\log \left(a b^{x}\right)$
$\log y=\log a+\log b^{x}$
$\log y=\log a+x \log b$
Intercept $=0.75$
$\log a=0.75$
$a=10^{0.75}=5.8$
Gradient $=\frac{0.58-0.72}{4-1}=-\frac{0.14}{3}=-0.04666 \ldots$

$$
\begin{aligned}
\log b & =-0.04666 \ldots \\
b & =10^{-0.04666 \ldots} \\
& =0.90
\end{aligned}
$$

So the formula is $y=5.8 \times 0.9^{x}$

